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Principle of stationary action was applied to derive a system of governing equations and boundary condi-
tions describing dynamics of sandpile avalanches. The derived general system of equations for the sandpile
dynamics is demonstrated to include equations of flow of granular material down a rigid wedge as a particular
case. It is shown that the variational principle can be readily implemented in a numerical algorithm.
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I. INTRODUCTION

Statics and dynamics of granular materials were investi-
gated quite intensively due to their importance in various
naturally occurring phenomena~landslides, rockfalls, desert
dunes evolution, sediment transport in rivers, etc.! and engi-
neering applications~transportation and storage of coal,
gravel, grain, etc.! @1–4#. An interesting type of granular
flow is a surface flow, which occurs in a relatively thin
boundary layer and does not penetrate into the bulk of the
material@2#. Much attention was paid to investigation of dy-
namics of sandpiles which are built on a support surface by
dropping of individual grains of granular material onto the
free surface of the pile.

Consider a sandpile which is building on a flat support
surface. Let grains of the material to be added one by one.
The grains will accumulate on the pile surface until the sur-
face slope reaches a critical angle of reposea0 . After that,
disturbances of the free surface due to grains added to the
system are balanced, on average, by the granular material
avalanches. The occurrence of the avalanches is spontane-
ous; the grains are able to accumulate on the pile surface and
to pour suddenly down the slope. Thus sandpiles organize
themselves into a statistically stable state.

The sandpile serves as a paradigm of the theory of self-
organized criticality ~SOC! proposed by Bak, Tang, and
Wiesenfield@5#. The prototype of SOC has been the sandpile
cellular automata model. It was found that there were indeed
no characteristic length or time scales, i.e., uncorrelated ava-
lanches of all time and length scales are present. However,
experiments did not fully confirm the prediction of the theory
@6#. The sandpiles were subsequently perturbed by the addi-
tion of a single grain at the center of the pile. The next grain
was dropped only after a full relaxation of avalanches caused
by a previous grain. Pile mass fluctuations and a probability
distribution of the granular material slides were measured for
conical piles with different base diameters. The observed be-
havior of sufficiently small sandpiles was found to be in a
good agreement with SOC theory. However, with increasing
base diameter, the probability of the large avalanches in-
creases while the probability of small ones decreases. Nearly
all mass flow of a sandpile built on 3-in plate occurred

through large periodic avalanches.
Another important difference between the 3-in sandpile

and smaller ones is the depth of the region where the flow
occurs. Most of the grains which flow off the smaller sand-
piles appear to originate near the sandpile surface, whereas
the large avalanches observed for the 3-in pile result from the
flow of sand further below the surface.

The ability of large masses of granular material to travel
long distances indicates that those large avalanches are
driven by strong inertial forces. A sandpile cellular automata
model which takes into account these effects was proposed
in @7#. The angle of repose was supposed to be a function of
energy accumulated by the toppled particles. Due to this
modification the model was able to reproduce the transition
from the scale-invariant relaxation to oscillations.

The grains in experiments@6# were added to the system
very slowly relative to the sandpiles’ relaxation rate. It is
intuitively clear that inertial effects only increase with the
increasing of the intensity of the granular material inflow.
The direct observations of stockpiles of sorted crushed stone
suggest that real piles of granular material do demonstrate
sudden collapselike inertia driven rearrangements@8#. Mas-
sive avalanches typically involve large blocs of the granular
material and, therefore, the determination of a cause or loca-
tion of the slide initiation is largely difficult. These ava-
lanches suddenly accelerate down the slope and move
through a long distance, incorporating additional particles
into the motion. Large slides always decrease the inclination
of the free surface of the sandpile.

Although the real processes of the grain redistribution is
intermittent, the results of experiments on building sandpiles
@9# allow us to suppose that some mean stable shape can be
determined in the general case. A successful continual model
of pile formation which provides quantitative results was
proposed by Prigozhin@8,10#. In these studies the granular
material was assumed to be characterized by one angle of
reposea0 . The inertial effects were neglected, i.e., the sys-
tem was driven by gravitational and frictional forces only.
Thus this model does not exhibit any collapselike behavior.
The mathematical model of heap evolution was proved to be
a dual formulation of a time-dependent quasivariational in-
equality.

In spite of its elegance and mathematical irreproachabil-
ity, this method has a limited range of applications. The in-
equality used in@8,10# is a variational one only if the support*Electronic addresa: elperin@menix.bgu.ac.il
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surface of the pile is inclined at an angle less than the angle
of repose everywhere. In the opposite case it becomes a qua-
sivariational inequality which requires time consuming itera-
tive treatment. In addition, this model was formulated in an
axiomatic manner without any physical justification, and its
possible generalizations are not clear.

Indeed, it can be showed that the obtained quasivaria-
tional inequality is equivalent to the requirement of the maxi-
mum dissipation rate. The latter principle was extensively
used in the theory of plasticity, and it is known to be appli-
cable only to quasistatic processes which proceed with an
infinitely small rate. Catastrophiclike processes with strong
inertial effects must be described by more general models
which are based on the first principles of physics@11#.

In this work the variational principle of stationary action
was applied to a description of sandpile evolution. It is
showed that a particular case of the model developed is
equivalent to the model described in@8,10#. However, appli-
cation of the principle of stationary action allows to take into
account the inertial effects driving heap evolution, i.e., ava-
lanches.

II. VARIATIONAL PRINCIPLE

We start with a generalized form of the principle of sta-
tionary action@11,12#:

d* E
V
E
t1

t2
~T2U !dV dt1E

V
E
t1

t2
~Fa1La!d* aadV dt

1E
G
E
t1

t2
~Fa1La!d* aadG dt50, ~1!

where density of LagrangianL5T2U is the difference be-
tween the kinetic and potential energies of the system,Fa are
nonconservative body and surface generalized forces which
cannot be represented as a gradient of a scalar potential~e.g.,
heat flux, viscous stress, etc.!, La are generalized forces of
reactions of constraints, andaa are parameters of the system
~e.g., configuration, entropy, etc.!.

The symbold* denotes total variation, while the symbol
d means variation at a fixed moment of time:

d* aa5
def

aa8 ~ t8,x8!2aa~ t,x!5daa1
daa

dt
dt,

where dt is ‘‘variation of time’’ d/dt5]/]t1n j]/]xj ,
n j5dXj /dt is velocity, andXj is displacement.

A parameter at a fixed point changes due to two reasons;
its own variation and its transfer by virtual displacements
@11#,

daa5 d̃aa1dXj¹ jaa ,

where d̃aa is a local variation of the parameteraa , and
dXj are virtual displacements. Therefore,

d* aa5 d̃* aa1d*Xj¹ jaa

d̃* aa5 d̃aa1
]aa

]t
dt.

Equation~1! for the virtual processes can be regarded as a
generalization of the first law of thermodynamics. Indeed,
this variational principle coincides with energy conservation
law when variationsd are replaced by differentialsd, i.e.,
when we take into account a real motion only.

III. PILE OF GRANULAR MATERIAL
WITH COULOMB FRICTION

Generally the problem of sandpile dynamics is formulated
as follows. Let a cohesionless granular material with bulk
densityr be poured down onto a rigid support surface with
profile h0(x,y), where (x,y)PV* and forms a heap with a
free boundaryh(t,x,y). All the material lies above the sup-
port surface, i.e.,

h>h0 . ~2!

The surface density of the material which falls onto the area
dV during time intervaldt is rw(t,x,y). Denote the mass
flux in the horizontal plane byrqW . Assume that the part
G1* of the boundary of the domainV is bounded by imper-
meable wall, i.e.,

qnuG150, ~3!

On the remaining partG2* of the boundary the material may
leave the system freely, and

huG25h0 ,

The problem is to determine the time dependence of the
height of a granular pileh(t,x,y) and vector of horizontal
mass fluxrqW .

In order to demonstrate that the governing equations for
the sandpile evolution may be determined with the aid of the
principle of a stationary action, consider the simplest case of
a pile of granular material with Coulomb friction, and ne-
glect inertial effects in the flowing granular material. In this
case the surface density of Lagrangian per unit area of do-
mainV equals the potential energy with a minus sign:

L52rgE
0

h

x dx52
rg

2
h2,

where densityr is supposed to be constant, andg is an
acceleration of gravity.

There are three contributions into the nonpotential part of
the variational equation~1!: dissipation due to friction in the
granular material, virtual influx of the Lagrangian through
the boundary of the domain, and potential energy which is
acquired by grains falling during the time intervaldt.

Determining the friction forceFW requires a detailed de-
scription of the friction mechanisms in a granular material.
Such mechanisms were discussed in@13,14#, and it was con-
firmed that forces acting on a layer of sand sliding down a
rough wedge corresponds to the Coulomb-like friction, i.e.,
FW }uW /uuu, whereuW is velocity of granular material.

On the other hand, it is known that sandpile avalanches
occur only if the pile surface is inclined at the critical angle
with respect to the horizontal plane. Thus an interesting simi-
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larity exists between plasticity theory and granular pile evo-
lution. According to the ideal plasticity model of von Mises,
the virtual dissipation in a plastic body is given by the fol-
lowing equation@15#:

dE5s i jdSi j52k
si j

Asi j si j
dSi j ,

wheres i j is a deviator of a stress tensor,si j is a tensor-
deviator of the deformation rate,dSi j is a tensor-deviator of
the virtual deformation, andk is a threshold shearing stress.
Using this similarity the mass flux density of the granular
material can be viewed as a deformation rate, while the tan-
gent of angle of reposeg can be viewed as a threshold shear-
ing stressk. Thus we postulate the dissipation per unit area
of domainV to be in the following Mises-like form:

dA5rFW • d̃QW 52grg
qW

uqu
• d̃QW

wheredA is energy which is dissipated during displacement
of the granular material with massm at a distancedrW such
thatmdrW5(rdV)dQW ,qW 5(]/]t)QW .

It is important to note that althoughFW is a two-
dimensional vector, it does not equal to the horizontal com-
ponent of the friction force which acts on the flowing granu-
lar layer, but is a vector which being multiplied by the
material flow rateqW equals the dissipation rate per unit area
of domainV. Consider a motion of a portion of granular
material with massm and velocityuW 5(u1 ,u2 ,u3) on a sup-
port surface with heighth. Introduce the local coordinates
(j,h,z) at the surface~Fig. 1!. In these coordinates velocity
of granular materialuW 5(uj ,uh ,0). The expression for
Coulomb-like friction forceFW c5(Fj

c ,Fh
c ,0) is given in@16#,

Fj
c5gmg cosa

uj

uuu
,

Fh
c5gmg cosa

uh

uuu
,

whereg is coefficient of friction,a is angle of inclination of
the surface, and cosa can be expressed via¹W h as follows:

cosa5@11~¹W h!2#21/2

Consider the expression for the dissipation rate,

«5Fj
cuj1Fh

cuh .

It is clear for simple geometrical reasons that

uj5F11S ]h

]xi

ui
uuu D

2G1/2u1 , i51,2,

uh5F11S ]h

]xi

ui
uuu D

2G1/2u2, i51,2.

Therefore the formula for dissipation rate can be written in
the following form:

«5mgg@11~¹h!2#1/2F11S ]h

]xi

ui
uuu D

2G1/2 ui2uuu
,

i51,2.

Thus in a case of Coulomb-like friction, we can use the
expression

mFi5mgg@11~¹h!2#21/2F11S ]h

]xi

ui
uuu D

2G1/2 uiuuu
~4!

as a definition of dissipative forceFW . Notably, a coefficient
nearmgg(ui /uuu) in Eq. ~4! determines the transformation
of force from the local coordinates to (x,y,z) coordinates in
a general case for arbitrary friction law.

When the material flow velocity is parallel to the support
surface profile gradient (u1 ,u2)}(]h/]x1 ,]h/]x2), the
above formula for dissipative forceFW can be simplified:

mFi5mgg
ui
uuu

,

i.e., the assumption of Mises-like friction is equivalent to the
assumption that the material flow velocity is directed toward
the steepest descent of the support surface profile. This as-
sumption will be justified below.

The virtual flux of the Lagrangian through the boundary
equals the potential energy which is acquired by the virtual
mass flow rate of grains:

FW L52rghd̃*QW ,

The potential energy which is acquired by grains falling dur-
ing the time intervaldt equals rgwhdt. Therefore the
variational equation~1! for a granular material with Cou-
lomb friction and neglecting inertial forces reads

FIG. 1. Schematic view of the surface.
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rgE
t1

t2E
V
H hd̃* h1g

qW

uqu
• d̃*QW 2whdtJ dV dt

1rgE
t1

t2 R
G

hd̃*QW •dnW dt50. ~5!

Note that variations in Eq.~5! are not independent. Obvi-
ously, the variational principle is invariant ifh is replaced by
h1h̃, where h̃ is an arbitrary constant. Substitutingh1h̃
into Eq.~5! and demanding that the coefficient nearh̃ vanish,
we obtain

d̃ * h52¹W • d̃*QW 1wdt. ~6!

Settingdt50 in ~6! we recover the continuity equation for
the synchronous variations of the governing parameters:

d̃ h52¹W • d̃QW . ~7!

From Eqs.~6! and ~7! we obtain the continuity equation for
the real process:

]h

]t
52¹W •qW 1w. ~8!

Substituting ~7! into ~5!, setting dt50 and using Gauss’
formula, we obtain the following equation:

¹W h52g
qW

uqu
. ~9!

The material flow is directed toward the steepest descent,
therefore formula~9! confirms the assumption of Mises-like
dissipation. Note that Eq.~9! is valid only if qÞ0 and
h>h0 . Thus Eq.~9! contains the implicit assumptions that
the granular material is actually flowing, and that the moving
layer is located above the support surface.

Equation~9! implies that

u¹W hu5g

for the flowing material, i.e., we have obtained the model
with one angle of repose.

The governing equations that we derived were known be-
fore. However, it is important to develop a variational ap-
proach for the simplest case before considering more com-
plex situations. Although Eq.~5! does not demonstrate the
full potential of the variational approach, it can be used for
constructing a numerical algorithm~see the Appendix!.

Notably Eq.~5!, unlike the equation used in@8,10#, is a
purely variational equation for arbitrary inclination of the
support surface.

IV. AVALANCHES

Use of the Coulomb friction law leads to the model de-
scribed by Eqs.~5! and ~6!, which does not exhibit any col-
lapselike avalanches. In order to incorporate larger ava-
lanches into this model, one must take into account that a
real friction in the granular material is not monotone. When
an initial portion of sand starts to slide down the heap, shear-

ing induced in the moving layer leads to dilatation and there-
fore reduces friction. The latter results in particle accelera-
tion and in a transfer of a ‘‘superfluous’’ momentum to
lower granular layers, involving them in the motion. In order
to describe such avalanches it is necessary to take the effects
of inertia of granular material into account.

Consider the granular material avalanche which propa-
gates down the pile surface with heighth. The flow occurs in
a layer with thicknessl , and the velocity of the center of
gravity of the moving layer isuW 5(u1 ,u2 ,u3). At the closed
part of the boundaryG1 the normal component of the veloc-
ity is zero, and on the open part the depth of the stationary
bulk of granular material is zero. Thus the boundary condi-
tions read

uini uG150,

~10!

huG25h0 ,

whereni is the unit vector normal to the boundary. Hereafter
all indices vary from 1 to 2~e.g., i51 and 2!, since we
consider only the horizontal flow component.

The thickness of the flowing layer is positive, and no
material lies below the support surface. Thus the system is
under the following constraints:

2 l<0, ~11!

h02h<0. ~12!

In order to formulate equations for the sandpile avalanches,
we must take into account kinetic and potential energies as
well as dissipative forces in the flowing granular material.

The formulate for the surface density of kinetic energy of
the moving layer reads

r lT5
r l

2 (
a51

3

ua
2 . ~13!

The velocity component in the vertical directionu3 can be
approximated by an arithmetical mean of the upper and
lower boundaries of the sliding granular layer,u35

1
2

(u3
upper1u3

lower), which satisfy the following kinematic equa-
tions:

uW 3
lower5ui

]h

]xi
,

uW 3
upper5

]~h1 l !

]t
2w1ui

]~h1 l !

]xi
.

The formula for the surface density of the potential energy
reads

U5
rg

2
~h1 l !2, ~14!

It is assumed that shearing does not influence the layer den-
sity @13#.

Virtual flux of the Lagrangian through the boundary of
the domainV is given by the following formula:
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FW L52r l FT2gS h1
l

2D Gd* xW , ~15!

whered*XW 5(d*X1 ,d*X2) is a virtual displacement. In for-
mula ~15! for Lagrangian flux, we take into account only the
potential energy of the flowing granular layer. Assuming a
particular form of the dissipative forcerFW 5r(F1 ,F2) closes
the model. The latter expressions were derived under the
assumption that all parameters of the moving granular layer
may be averaged over the layer’s depth as it was done in
@13#.

Substituting Eqs.~13!–~15! into variational Eq.~1!, mul-
tiplying the constraint~11! by Lagrangian multiplierrl and
the constraint~12! by Lagrangian multiplierrm, we obtain
the following variational equation:

rE
t1

t2E
V

$ l d̃*T1@T2l2g~h1 l !#d̃* l2@g~h1 l !2m#d̃* h

2 lF id*Xi2g~h1 l !wdt%dtdV

1rE
t1

t2 R
G
H l FT2rgS h1

l

2D Gd*Xi J dnidt

50. ~16!

As was noted before, the variations in the Eq.~16! are not
independent. Replacingh by h1h1h̃ and repeating the
analysis from Sec. III, we obtain the following continuity
conditions:

d̃ h1 d̃ l52
]~ ldXi !

]xi
, ~17!

]h

]t
1

] l

]t
52

]~ lui !

]xi
1w. ~18!

Using the equation of continuity~18! we can rewrite the
expression for the vertical component of the velocity in the
following form:

u35ui
]h

]xi
2

l

2

]ui
]xi

. ~19!

Settingd̃* h anddt in ~16! equal to zero, taking into account
Eq. ~17! and integrating by parts with respect to time and the
spatial coordinates, we arrive at the following variational
equation:

E
t1

t2E
V
H 2

d

dt F lui1 lu3
]h

]xi
1

]

]xi
S l 22 u3D G1 lu3F ]2h

]xi]xj
uj2

]

]xi
S l2D ]uj

]xj
G2

]

]xi
S l 22 ]uj

]xj
u3D2gl

]~h1 l !

]xi
2 lF i

2 l
]l

]xi
J dXidt dV1E

t1

t2 R
G
H d

dt S l
2

2
u3D1

l 2

2

]uj
]xj

u32g
l 2

2 J dXidnidt50 ~20!

Setting in ~20! the variationsdXi at the boundary equal to
zero, we obtain the equations of motion

d

dt F lui1 lu3
]h

]xi
1

]

]xi
S l 22 u3D G

5 lu3F ]2h

]xi]xj
uj2

]

]xi
S l2D ]uj

]xj
G2

]

]xi
S l 22 ]uj

]xj
u3D

2gl
]~h1 l !

]xi
2 lF i2 l

]l

]xi
. ~21!

Since variationsdXi are arbitrary, Eq.~20! yields the follow-
ing boundary condition:

H d

dt S l
2

2
u3D1

l 2

2

]uj
]xj

u32g
l 2

2 J U
G2

50. ~22!

Keeping the terms with variations ofl and h in ~16! and
setting variationsdXi50 leads to the following equation
which determines the depth of a moving layer:

1

2(
a51

3

ua
21

]~ lu3ui !

]xi
2

l

2

]ui
]xi

u31l2m50. ~23!

The derived system of partial differential equations~18!,
~21!, and ~23!, and inequalities~11! and ~12! for h, uW , l ,
l, andm, must be solved with the boundary conditions~12!
and ~22!.

Since the depth of the moving layerl was assumed to be
small compared with the characteristic length and height of
the pile, it was shown in@13,16# that terms of orderl 2 may
be omitted in the equation of momentum conservation, but in
variational equation~16! we kept them in order to derive the
boundary condition~22!. Neglecting these terms, we can re-
write Eqs.~21! and ~19! in the following simplified form:

d

dt
l S ui1u3

]h

]xi
D5 lu3

]2h

]xi]xj
uj2gl

]~h1 l !

]xi
2 lF i2 l

]l

]xi
,

~24!

u35uj
]h

]xj
. ~25!

The variational principle in the form~16! may be also used
for obtaining the governing equations in the case when
granular material is sliding down a rigid wedge. Differential
equations for this case were obtained in@13,16# by averaging
full equations of conservation mass and momentum over the
moving layer depth.
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Indeed, replacingh by h0 and takingd* h50, we can
rewrite the variational equation~16! in the following form:

E
t1

t2E
V

$ l d̃*T1@T2g~h01 l !#d̃* l2 lF id*Xi

2g~h01 l !wdt%dt dV

1E
t1

t2 R
G
H l FT2rgS h01 l

2D Gd*Xi J dnidt50.

~26!

Repeating the above analysis we obtain the continuity equa-
tions

] l

]t
52

]~ lui !

]xi
1w,

~27!

d̃ l52
]~ ldxi !

]Xi
.

Substituting the latter equations into the variational equality
~26! and integrating by parts with respect to time and spatial
coordinates, we obtain the equations of momentum conser-
vation

d

dt
l S ui1u3

]h0
]xi

D5 lu3
]2h0

]xi]xj
uj2gl

]~h01 l !

]xi
2 lF i ,

~28!

and the boundary condition

H d

dt S l
2

2
u3D1

l 2

2

]uj
]xj

u32g
l 2

2 J U
G2

50.

In Eq. ~28!, small terms of orderl 2 were neglected. Equa-
tions ~27! and ~28! in (j,h) coordinates coincide after in-
verse transformation of dissipative force~4! with equations
which were derived in@13# and @16#.

The specific form of the friction force is not discussed
here. Friction in flowing sand was investigated by many au-
thors~see, e.g.,@13,14#!, and it was confirmed that the main
contribution into a friction force constitute Coulomb-like
friction with weak shear rate dependence.

V. SEGREGATION IN PILE OF GRANULAR MATERIAL

Let us consider the evolution of a sandpile composed of a
binary mixture of particles of the same density and with di-
ametersd1 andd2 . If 0.39<d1 /d2<2.55, the bulk density
r does not depend upon the mixture composition, i.e.,
changes in the bulk density less than 5%@17#. Therefore,
hereafterr is supposed to be constant.

Mass of the material of thei th type which falls onto the
areadV during time intervaldt is rwi(t,x,y)dVdt. Denote
the mass flux of thei th component in the horizontal plane by
rqW i . Let Ci(t,x,y,z),x,yPV,zP@h0 ,h20# be the mass
fraction of thei th component of the granular material inside
the stationary granular heap, i.e.,

Ci>0, C15C, C25~12C1!.

Assume that the boundaryG of the domainV is bounded by
an impermeable wall, i.e.,

qnuG50.

The equations of material balance for each component of the
granular material can be written as follows:

C
]h

]t
52¹W •qW 11w1 ,

~12C!
]h

]t
52¹W •qW 21w2 .

Let us consider the main contributions to the rate of energy
dissipation during particle slides down the heap. It is sug-
gested@17# that the dissipation arises from kinetic energy
lost in inelastic interparticle collisions, and from potential
energy loss due to rubbing. Consider small discharge rates,
so that inertial effects in the flowing granular material can be
neglected, and take into account only the Coulomb-like fric-
tion during the particles sliding down the sandpile slope.
Then the dissipation rate of energy of the mixture per unit
area of domainV can be represented as a sum of dissipations
rates of each component:

dA52rgS g1

qW 1
uq1u

• d̃QW 11g2

qW 2
uq2u

• d̃QW 2D , qi5]Qi /]t,

where g i„C@x,y,h(x,y)20#… depend on a composition of
the upper layer of the stationary granular pile.

Keeping only synchronous variations of the governing pa-
rameters, we can rewrite the variational equation~5! in the
following form:

rgE
t1

t2E
V
H hdh1g1

qW 1
uq1u

• d̃QW 11g2

qW 2
uq2u

• d̃QW 22w1hdt

2w2hdtJ dV dt50, ~29!

where

dh52¹W • d̃QW 12¹W • d̃QW 2 . ~30!

If the upper layer of the granular heap slides down, the com-
position of the granular material which starts to slide down
the heap is determined by the composition of the adjacent
granular layer which is involved in the motion:

C

12C
5

¹W • d̃QW 1

¹W • d̃QW 2

for ¹W •qW 1>w1 , ~31!

whereC is determined at the point„x,y,@h(x,y)20#….
When any component of the mixture is sedimented on the

granular pile, the other component cannot leave the upper
layer of the granular heap. Therefore,

¹W • d̃QW 2<0 for ¹W •qW 1<w1 . ~32!
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Multiplying constraint ~31! by Lagrangian multiplierrx1 ,
and constraint~32! by Lagrangian multiplierrx2 , substitut-
ing this into the variational Eq.~29!, using ~30! and the
Gauss formula, we obtain the following equations:

¹@h1x1~12C!#52g1

qW 1
uq1u

for ¹W •qW 1>w1 ,

~33!

¹~h2x1C!52g2

qW 2
uq2u

for ¹W •qW 1>w1 ,

¹h52g1

qW 1
uq1u

for ¹W •q1<w1 ,

~34!

¹~h1x2!52g2

qW 2
uq2u

for ¹W •qW 1<w1 .

The above equations together with equations of material bal-
ance provide a closed description of the pile evolution.

Equation~34! shows thatx2Þ0 for g1Þg2 . Sincex2 is a
Lagrangian multiplier,x2¹•dQW 250, and the second com-
ponent does into sediment during sedimentation of the first
component of the granular mixture. Therefore, the combina-
tion of the assumption of Coulomb friction and the small
velocity of the slide yield the model which predicts the com-
plete separation of components of granular material during
avalanches. Such a separation can occur when intermittent
avalanches are obtained when rotating a horizontal drum
filled with a mixture of two granular materials slowly and
continuously. Indeed, particle size segregation in a rotating
drum was observed experimentally in@17#.

VI. CONCLUSIONS

A variational form of the basic thermodynamics prin-
ciples was applied to describe dynamics of sandpiles. A sys-
tem of governing the equations and boundary conditions was
derived. It is shown that the variational principle can be
readily implemented in a numerical algorithm. Equations de-
scribing the flow of granular material down a rigid edge were
demonstrated to be a particular case of the derived general
system of equations for the avalanches dynamics in sand-
piles. The derived system of equations of sandpile dynamics
predicts the complete separation of a mixture of two granular
materials during avalanches@18#.

APPENDIX: NUMERICAL ALGORITHM

The variational method not only provides an analytical
description of the problem, it can also be used for construct-

ing a numerical procedure. Consider the simplest case of a
pile with Coulomb friction.

After discretizations in time, Eq.~8! and the formula for
dQW at timek2 read

hk5hk211~w2¹W •qW k!D t ,

dQW k5dqW kDt.

Then, substituting the above formulas into variational Eq.
~5!, after simple algebra we obtain the following minimiza-
tion problem at timekD:

E
V
H Dt

2
~DW •qW k!

21guqW ku2~hk211wDt !¹W •qW kJ dV

1 R
G2

h0qW k•dnW→
qW
min. ~A1!

Constraint~2! and boundary condition~3! can be written as
follows:

f52h02~hi211wDt !1Dt¹W •qW i<0,

~A2!

qnuG150.

Equations~A1! and ~A2! together with Eq.~8! provide a
closed description of the system. This problem can be solved
by duality method@19#. The simplest one leads to the fol-
lowing sequence of minimization problems:

E
V
H Dt

2
~¹•qW k

~n!!21gpW k
~n!qW k

~n!2~hk211wDt !¹•qW k
~n!

1r ~ f ~n!2z~n!!21l~n!~ f ~n!2z~n!!%dV

1 R
G2

h0qW k
~n!
•dnW→

qW
min,

l~n!5sup$@l~n21!1u1r f ~qW k
~n21!!#,0%, 0,u1,2,

pW ~n!5S pW ~n21!1
u2
g
qW k

~n21!D YsupF1,S pW ~n21!1
u2
g
qW k

~n21!D G ,
0,u2,2,

z~n!5supF S f ~n21!2
l~n!

2r D ,0G ,
wherepW andl are Lagrangian multipliers,z is a slack vari-
able, andr is a penalty parameter.

This problem of quadratic programming can be solved by
relaxation methods or by reduction to linear equations of an
elliptic type. The above algorithm converges for an arbitrary
value of a penalty parameterr @19#.
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