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Variational formulation of sandpile dynamics
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Principle of stationary action was applied to derive a system of governing equations and boundary condi-
tions describing dynamics of sandpile avalanches. The derived general system of equations for the sandpile
dynamics is demonstrated to include equations of flow of granular material down a rigid wedge as a particular
case. It is shown that the variational principle can be readily implemented in a numerical algorithm.

PACS numbgs): 05.40:+j, 46.10+2z, 05.60:+w, 83.70.Fn

I. INTRODUCTION through large periodic avalanches.
Another important difference between the 3-in sandpile
Statics and dynamics of granular materials were investiand smaller ones is the depth of the region where the flow
gated quite intensively due to their importance in variousoccurs. Most of the grains which flow off the smaller sand-
naturally occurring phenomer{¢andslides, rockfalls, desert piles appear to originate near the sandpile surface, whereas
dunes evolution, sediment transport in rivers,)eand engi-  the large avalanches observed for the 3-in pile result from the
neering applicationgtransportation and storage of coal, flow of sand further below the surface.
gravel, grain, et¢.[1-4]. An interesting type of granular The ability of large masses of granular material to travel
flow is a surface flow, which occurs in a relatively thin long distances indicates that those large avalanches are
boundary layer and does not penetrate into the bulk of theriven by strong inertial forces. A sandpile cellular automata
material[2]. Much attention was paid to investigation of dy- model which takes into account these effects was proposed
namics of sandpiles which are built on a support surface byn [7]. The angle of repose was supposed to be a function of
dropping of individual grains of granular material onto the energy accumulated by the toppled particles. Due to this
free surface of the pile. modification the model was able to reproduce the transition
Consider a sandpile which is building on a flat supportfrom the scale-invariant relaxation to oscillations.
surface. Let grains of the material to be added one by one. The grains in experimen{$] were added to the system
The grains will accumulate on the pile surface until the survery slowly relative to the sandpiles’ relaxation rate. It is
face slope reaches a critical angle of repage After that, intuitively clear that inertial effects only increase with the
disturbances of the free surface due to grains added to thacreasing of the intensity of the granular material inflow.
system are balanced, on average, by the granular materi@he direct observations of stockpiles of sorted crushed stone
avalanches. The occurrence of the avalanches is spontarsiggest that real piles of granular material do demonstrate
ous; the grains are able to accumulate on the pile surface arsidden collapselike inertia driven rearrangem¢8ts Mas-
to pour suddenly down the slope. Thus sandpiles organizsive avalanches typically involve large blocs of the granular
themselves into a statistically stable state. material and, therefore, the determination of a cause or loca-
The sandpile serves as a paradigm of the theory of selftion of the slide initiation is largely difficult. These ava-
organized criticality (SOQ proposed by Bak, Tang, and lanches suddenly accelerate down the slope and move
Wiesenfield 5]. The prototype of SOC has been the sandpilethrough a long distance, incorporating additional particles
cellular automata model. It was found that there were indeeéhto the motion. Large slides always decrease the inclination
no characteristic length or time scales, i.e., uncorrelated avaf the free surface of the sandpile.
lanches of all time and length scales are present. However, Although the real processes of the grain redistribution is
experiments did not fully confirm the prediction of the theory intermittent, the results of experiments on building sandpiles
[6]. The sandpiles were subsequently perturbed by the addj9] allow us to suppose that some mean stable shape can be
tion of a single grain at the center of the pile. The next graindetermined in the general case. A successful continual model
was dropped only after a full relaxation of avalanches causedf pile formation which provides quantitative results was
by a previous grain. Pile mass fluctuations and a probabilityproposed by Prigozhif8,10]. In these studies the granular
distribution of the granular material slides were measured fomaterial was assumed to be characterized by one angle of
conical piles with different base diameters. The observed bereposea. The inertial effects were neglected, i.e., the sys-
havior of sufficiently small sandpiles was found to be in atem was driven by gravitational and frictional forces only.
good agreement with SOC theory. However, with increasingrhus this model does not exhibit any collapselike behavior.
base diameter, the probability of the large avalanches inThe mathematical model of heap evolution was proved to be
creases while the probability of small ones decreases. Nearly dual formulation of a time-dependent quasivariational in-
all mass flow of a sandpile built on 3-in plate occurredequality.
In spite of its elegance and mathematical irreproachabil-
ity, this method has a limited range of applications. The in-
*Electronic addresa: elperin@menix.bgu.ac.il equality used ih8,10] is a variational one only if the support
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surface of the pile is inclined at an angle less than the anglEquation(1) for the virtual processes can be regarded as a
of repose everywhere. In the opposite case it becomes a qugeneralization of the first law of thermodynamics. Indeed,
sivariational inequality which requires time consuming itera-this variational principle coincides with energy conservation
tive treatment. In addition, this model was formulated in anlaw when variationss are replaced by differentiald, i.e.,
axiomatic manner without any physical justification, and itswhen we take into account a real motion only.
possible generalizations are not clear.
Indeed, it can be showed that the obtained quasivaria- Il. PILE OF GRANULAR MATERIAL
tional inequality is equivalent to the requirement of the maxi- WITH COULOMB FRICTION
mum dissipation rate. The latter principle was extensively
used in the theory of plasticity, and it is known to be appli- ~Generally the problem of sandpile dynamics is formulated
cable on|y to quasistatic processes which proceed with ags follows. Let a cohesionless granular material with bulk
infinitely small rate. Catastrophiclike processes with stronglensityp be poured down onto a rigid support surface with
inertial effects must be described by more general modelBrofile ho(x,y), where §,y) e O* and forms a heap with a
which are based on the first principles of phydit]. free boundanh(t,x,y). All the material lies above the sup-
In this work the variational principle of stationary action port surface, i.e.,
was applied to a description of sandpile evolution. It is
showed that a particular case of the model developed is
equivalent to the model described(i10]. However, appli- The surface density of the material which falls onto the area

cation of the principle of stationary action allows to take mton during time intervaldt is pw(t,x,y). Denote the mass

account the inertial effects driving heap evolution, i.e., ava- i i -
lanches. flux in the horizontal plane byq. Assume that the part

I'} of the boundary of the domaift is bounded by imper-
meable wall, i.e.,

h=h,. 2

II. VARIATIONAL PRINCIPLE

We start with a generalized form of the principle of sta- Qn|l“1:0: ()
tionary action[11,12:
On the remaining parff} of the boundary the material may
t t I th tem freely, and
5*f “(T-U)do dt+f fz(lzama)a*aada gt cave e systemireely, an
aly aly

h|r2:h0'

t
+L£ (FotA,)6%a,dl dt=0, D The problem is to determine the time dependence of the
' height of a granular pild(t,x,y) and vector of horizontal

where density of Lagrangiab=T—U is the difference be- mass fIUXpﬁ.
tween the kinetic and potential energies of the systefrare In order to demonstrate that the governing equations for
nonconservative body and surface generalized forces whicthe sandpile evolution may be determined with the aid of the
cannot be represented as a gradient of a scalar potémtial  principle of a stationary action, consider the simplest case of
heat flux, viscous stress, etcA , are generalized forces of a pile of granular material with Coulomb friction, and ne-
reactions of constraints, areg, are parameters of the system glect inertial effects in the flowing granular material. In this
(e.g., configuration, entropy, etc. case the surface density of Lagrangian per unit area of do-

The symbols* denotes total variation, while the symbol main () equals the potential energy with a minus sign:
8 means variation at a fixed moment of time: .

p

h
_ _ _"Y9RK2
def L= ngox dx= 5 h?,

da,

s*a,=al(t’' ,x')—a,(t,x)=da,+ i o7,
where densityp is supposed to be constant, agdis an
where &7 is “variation of time” d/dt=ad/dt+v;d/dx;, ~ acceleration of gravity. _
v;=dX; /dt is velocity, andX; is displacement. There are three contributions into the nonpotential part of

A parameter at a fixed point changes due to two reasondhe variational equatiofl): dissipation due to friction in the

its own variation and its transfer by virtual displacementsdranular material, virtual influx of the Lagrangian through
[11], the boundary of the domain, and potential energy which is

acquired by grains falling during the time intervéd.
da,=da,+ oX;Va,, Determining the friction force® requires a detailed de-
_ scription of the friction mechanisms in a granular material.
where da, is a local variation of the parameter,, and  Such mechanisms were discusselig, 14, and it was con-

6X; are virtual displacements. Therefore, firmed that forces acting on a layer of sand sliding down a
_ rough wedge corresponds to the Coulomb-like friction, i.e.,
5*a,= 8" a,+ 5" X;Va, Focu/|u|, whereli is velocity of granular material.
On the other hand, it is known that sandpile avalanches
Sa = a4+ &57 occur only if the pile surface is inclined at the critical angle

@ “ a7 with respect to the horizontal plane. Thus an interesting simi-
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F.=ymg comrﬁ,
wherevy is coefficient of friction,« is angleaof inclination of
the surface, and cascan be expressed vih as follows:
cosy=[1+(Vh)2]~12
Consider the expression for the dissipation rate,

_ (o4 o4
s—F§u§+F,,u,,.

It is clear for simple geometrical reasons that

T A PR

Ug= o il u ) 1= 15y

¢ ax; |ul !

FIG. 1. Schematic view of the surface. oh u; \?]¥2 _
u,={1+|—r— u,, 1i=1,2.
K % |ul

larity exists between plasticity theory and granular pile evo-

lution. According to the ideal plasticity model of von Mises, Therefore the formula for dissipation rate can be written in
the virtual dissipation in a plastic body is given by the fol- the following form:

lowing equation15]:

1/2 ui2

s=mgy[l+(Vh)2]1’Z[1+

U; )2
Sij ax; |ul [u]’

=95,
SiiSi i=1,2.

where gj; is a deviator of a stress tensa; is a tensor-  Thus in a case of Coulomb-like friction, we can use the
deviator of the deformation ratéS; is a tensor-deviator of expression

the virtual deformation, anH is a threshold shearing stress.
Using this similarity the mass flux density of the granular

material can be viewed as a deformation rate, while the tan- ~ MF=mgy[1+(Vh)?]"*?
gent of angle of reposg can be viewed as a threshold shear-

ing stressk. Thus we postulate the dissipation per unit are
of domainQ to be in the following Mises-like form:

1/2 u;

1+ —
|ul

4

U; 2
ax; [u]

%s a definition of dissipative forde. Notably, a coefficient
nearmgy(u;/|u]) in Eqg. (4) determines the transformation
of force from the local coordinates tx,f/,z) coordinates in

s o~ q ~- a general case for arbitrary friction law.

OoA=pF-6Q=— VPQH -6Q When the material flow velocity is parallel to the support

surface profile gradient ug,u,)e(dh/dx,,dhldx,), the

where A is energy which is dissipated during displacement220ve formula for dissipative fordeé can be simplified:

of the gfanular maEerjaI with mase at a distancedr such u

thatmér = (pdQ) 6Q,q=(d/41)Q. i mFi=mgym,
It is important to note that althoughr is a two-

dimensional vector, it does not equal to the horizontal comy e | the assumption of Mises-like friction is equivalent to the

ponent of the friction force which acts on the flowing granu- assumption that the material flow velocity is directed toward

lar layer, but is a vector which being multiplied by the the steepest descent of the support surface profile. This as-

material flow rateq equals the dissipation rate per unit areasumption will be justified below.

of domain (). Consider a motion of a portion of granular  The virtual flux of the Lagrangian through the boundary

material with massn and VelOCityJ:(Ul,Uz,Ug) onasup- equals the potential energy which is acquired by the virtual

port surface with heighh. Introduce the local coordinates Mass flow rate of grains:

(&,7,¢) at the surfacéFig. 1). In these coordinates velocity R - .

of granular materialu=(u,,u,,0). The expression for & =—-pghs*Q,

Coulomb-like friction forceF¢= (F¢ ,F‘j],O) is given in[16],

-

The potential energy which is acquired by grains falling dur-

ing the time interval§T equals pgwhdr. Therefore the

ng ymg COSaE variatio.na}l equation1) fo.r a_grar_lular material with Cou-
[u]’ lomb friction and neglecting inertial forces reads
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_ ing induced in the moving layer leads to dilatation and there-
.8*Q—whor(dQ dt fore reduces friction. The latter results in particle accelera-
tion and in a transfer of a “superfluous” momentum to
t - lower granular layers, involving them in the motion. In order
+pgf é hé*Q-dn dt=0. (5)  to describe such avalanches it is necessary to take the effects
ty JT of inertia of granular material into account.
Consider the granular material avalanche which propa-
gates down the pile surface with heightThe flow occurs in
a layer with thicknesd, and the velocity of the center of

gravity of the moving layer i§=(u1,u2,u3). At the closed
part of the boundary'; the normal component of the veloc-
ity is zero, and on the open part the depth of the stationary
bulk of granular material is zero. Thus the boundary condi-

a

t ~
pg 2] [hﬁ*h-i—'y
t, Jo I

Note that variations in Eq(5) are not independent. Obvi-
ously, the variational principle is invariantfifis replaced by
h+h, whereh is an arbitrary constant. Substitutirgth

into Eq.(5) and demanding that the coefficient néaranish,
we obtain

B*h=—-V. 5 O+wdr. (6)

tions read
Setting 57=0 in (6) we recover the continuity equation for uni|r.=0
the synchronous variations of the governing parameters: R T 10
’Bh:—ﬁ.sé. (7) h|F2=h0,

From Egs.(6) and(7) we obtain the continuity equation for

wheren; is the unit vector normal to the boundary. Hereafter
the real process:

all indices vary from 1 to 2e.g.,i=1 and 2, since we
oh consider only the horizontal flow component.
—=—€~5+W- (8) The thickness of the flowing layer is positive, and no
ot material lies below the support surface. Thus the system is

Substituting(7) into (5), setting 57=0 and using Gauss’ under the following constraints:

formula, we obtain the following equation: —1<0, (11
. q hy—h=<0. 12
Vh=— y%. (9) 0 (12)

In order to formulate equations for the sandpile avalanches,

The material flow is directed toward the steepest descenfV® Must take into account kinetic and potential energies as

therefore formulg9) confirms the assumption of Mises-like well as dissipative forces in the flowing granular material.

dissipation. Note that Eq(9) is valid only if =0 and The formulate for the surface density of kinetic energy of

h=h,. Thus Eq.(9) contains the implicit assumptions that he moving layer reads

the granular material is actually flowing, and that the moving | 3

layer is Ipcated. abqve the support surface. pIT= p_z Ui- (13)
Equation(9) implies that 241

|€h|: y The velocity component in the vertical directio3 can be
approximated by an arithmetical mean of the upper and
for the flowing material, i.e., we have obtained the modellower boundaries of the sliding granular layeng=3;
with one angle of repose. (UgPPE oW - which satisfy the following kinematic equa-
The governing equations that we derived were known betions:

fore. However, it is important to develop a variational ap-
proach for the simplest case before considering more com- Jlower:u_ﬂ
plex situations. Although Eq5) does not demonstrate the 3 Lax;’
full potential of the variational approach, it can be used for

constructing a numerical algorithfsee the Appendix ~ypper_ 0N+ d(th+1)

Notably Eq.(5), unlike the equation used i{i8,10], is a U™ =g Wl
purely variational equation for arbitrary inclination of the
support surface. The formula for the surface density of the potential energy

reads
IV. AVALANCHES g
_F3 2
Use of the Coulomb friction law leads to the model de- U= 2 (h+D%, (14)

scribed by Eqs(5) and(6), which does not exhibit any col-

lapselike avalanches. In order to incorporate larger aval is assumed that shearing does not influence the layer den-
lanches into this model, one must take into account that aity [13].

real friction in the granular material is not monotone. When Virtual flux of the Lagrangian through the boundary of
an initial portion of sand starts to slide down the heap, sheathe domain(} is given by the following formula:
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=0. (16)

>

cDL:—pl[T—g 5*X, (15)

!
ht 5

As was noted before, the variations in the Et6) are not

Whereﬁ*)?z(é*x1 6* X,) is a virtual displacement. In for- independent. Replacing by h+h+h and repeating the
' analysis from Sec. Ill, we obtain the following continuity

mula (15) for Lagrangian flux, we take into account only the ditions:
potential energy of the flowing granular layer. Assuming geonditions:

particular form of the dissipative forqdf:p(Fl,Fz) closes _ o~ (1 8X;)

the model. The latter expressions were derived under the oh+dl=—-—1—, (17

assumption that all parameters of the moving granular layer !

may be averaged over the layer's depth as it was done in oh a(luy)

[13]. il (18
(|

Substituting Egs(13)—(15) into variational Eq.(1), mul-
tiplying the constraint11) by Lagrangian multipliepA and  Using the equation of continuityl8) we can rewrite the
the constrain(12) by Lagrangian multipliepu, we obtain  expression for the vertical component of the velocity in the

the following variational equation: following form:
ftzf (3 TH[T-A—g(h+ 1) T3 —[g(h+1)— u]3*h oh_ 1o 19
p o Ja 9 9 M Us= Ui g™ 5 o (19
—IF;8*X;—g(h+Hwér}dtdQ Settings* h and 67 in (16) equal to zero, taking into account
. | Eqg. (17) and integrating by parts with respect to time and the
+Pf 2 fﬁ HT—pg hi - 5*Xi]dnidt spatial coordinates, we arrive at the following variational
y Jr 2 equation:
|
ftzf e 12 | #°h g (1) au] a 12 u; a(h+1)
t dt Ui u3ax, _x, 2Ys)|TiUs IX;0; YT o\ 2 ax;| oxi\ 2 ax; ° IXi ‘
|2 L sxid d9+ft2§; d(lz L ’ sXdndt=0 20
ax idt tlraZ 2&xu3g ndt= (20)

Setting in(20) the variationssX; at the boundary equal to The derived system of partial differential equatiofis),

zero, we obtain the equations of motion (21), and (23), and inequalitieg11) and (12) for h, u, I,
N\, andu, must be solved with the boundary conditiqi®)
d dh a9 [I? and(22).
gt Uit '“33_)(i+ % 5“3) Since the depth of the moving layewas assumed to be
small compared with the characteristic length and height of
B a*h a (1\au] a (17 ay the pile, it was shown ifi13,16 that terms of ordet? may
T oxiax; YT ox |2 axj| axi\ 2 (9_x].u3 be omitted in the equation of momentum conservation, but in
variational equatiori16) we kept them in order to derive the
gl d(th+1) CIF—| IN (o) boundary conditior{22). Neglecting these terms, we can re-
X ax” write Egs.(21) and(19) in the following simplified form:
Since variations’X; are arbitrary, Eq(20) yields the follow- d dh 9°h ath+1) 2N
ing boundary condition: at! Ui+U3a—Xi :lusﬁxi&xj u;—gl o%; —IFi—l— %
(24)
d1z |\ 12gu 12
izt s pneeg] | <o e "
2 Uz= Uj ﬁ_XJ . (25)

Keeping the terms with variations ¢fand h in (16) and
setting variationséX;=0 leads to the following equation
which determines the depth of a moving layer:

The variational principle in the fornil6) may be also used
for obtaining the governing equations in the case when
granular material is sliding down a rigid wedge. Differential

3 equations for this case were obtainedi8,16| by averaging
EE d(lugu;) _ I_ %u +A—pu=0 (23) full equations of conservation mass and momentum over the
25 X 2 9x; ° ' moving layer depth.
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Indeed, replacinch by hy and taking5*h=0, we can Ci=0, C,;=C, C,=(1-C).
rewrite the variational equatiofi6) in the following form:
Assume that the boundaty of the domain() is bounded by

¢ _ _ ‘ ;
f 2 (15 T+ [T—g(ho+ 1) 3*1 —IF, X, an impermeable wall, i.e.,
t; Ja

Qn|F:O-
—g(hothHworidt dQ The equations of material balance for each component of the
| granular material can be written as follows:
t
+J2 % |[T_pg(h0+— 5*)(, dnidt=0. Jh
et 2 C—z—ﬁ-a +w
(26) at v
Repeating the above analysis we obtain the continuity equa- ah L.
tions (1—C)E=—V-q2+w2.
‘9_|: _ a(lui) n Let us consider the main contributions to the rate of energy
at X ' dissipation during particle slides down the heap. It is sug-

27 gested[17] that the dissipation arises from kinetic energy
lost in inelastic interparticle collisions, and from potential
a(l 6x;) energy loss due to rubbing. Consider small discharge rates,
ax so that inertial effects in the flowing granular material can be
neglected, and take into account only the Coulomb-like fric-
Substituting the latter equations into the variational equalitytion during the particles sliding down the sandpile slope.
(26) and integrating by parts with respect to time and spatialThen the dissipation rate of energy of the mixture per unit
coordinates, we obtain the equations of momentum consegrea of domairf) can be represented as a sum of dissipations

Bl=—

vation rates of each component:
d ohg #%h, d(hg+1) 1 ~- O ~-=
at! Ui+U3&—Xi>—|U3mUj—g|a—xi—|Fi, 0A=—pg Mm‘&?ﬁhm'fmz . 9i=0Qi/at,
(28)

where ¥;(C[x,y,h(x,y)—0]) depend on a composition of
and the boundary condition the upper layer of the stationary granular pile.
Keeping only synchronous variations of the governing pa-
d (12 12 du; 12
at| 2% "2 o792

rameters, we can rewrite the variational equatinin the
following form:

In Eq. (28), small terms of orderz' were neglected. Equa- pgftzf [h5h+yl&_”g@lﬂz&.g@_wlh&
tions (27) and (28) in (&,7) coordinates coincide after in- t, Jo a4 Loy
verse transformation of dissipative for¢4) with equations
which were derived if13] and[16].

The specific form of the friction force is not discussed
here. Friction in flowing sand was investigated by many au-
thors(see, e.g.[13,14), and it was confirmed that the main where
contribution into a friction force constitute Coulomb-like ol
friction with weak shear rate dependence. oh=-V-6Q,;—-V-6Q,. (30)

Iy

—wzhar] dQ dt=0, (29

If the upper layer of the granular heap slides down, the com-
position of the granular material which starts to slide down
Let us consider the evolution of a sandpile composed of &he heap is determined by the composition of the adjacent
binary mixture of particles of the same density and with di-granular layer which is involved in the motion:
ametersd; andd,. If 0.39<d,/d,=<2.55, the bulk density e
p does not depend upon the mixture composition, i.e., C V-6Q > s
changes in the bulk density less than $%7]. Therefore, 1-C~ v.30, for V-q;=wy, (32)
hereafterp is supposed to be constant.
Mass of the material of theth type which falls onto the \whereC is determined at the poirik,y,[ h(x,y) —0]).
aread(} during time intervaldt is pw;(t,x,y)d{1dt. Denote When any component of the mixture is sedimented on the
the mass flux of theth component in the horizontal plane by granular pile, the other component cannot leave the upper
pdi. Let Ci(t,x,y,2),x,yeQ,ze[hy,h—0] be the mass layer of the granular heap. Therefore,
fraction of theith component of the granular material inside . .
the stationary granular heap, i.e., V-6Q,<0 for V-q;=<wj. (32

V. SEGREGATION IN PILE OF GRANULAR MATERIAL
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ing a numerical procedure. Consider the simplest case of a
Multiplying constraint(31) by Lagrangian multiplierpy, pile with Coulomb friction.
and constraint32) by Lagrangian multipliepx,, substitut- After discretizations in time, Eq8) and the formula for
ing this into the variational Eq(29), using (30) and the  5Q at timek, read
Gauss formula, we obtain the following equations:

he=he_1+(W=V-qoA,,

V[h+X1(1—C)]:—y1W for V-q,=wy, 5Qy= 5qiAt.
Then, substituting the above formulas into variational Eq.
(33)  (5), after simple algebra we obtain the following minimiza-
tion problem at timekA:
V(h—y,C)=—y,—= for V-q;=w At o - s .
X1 Y27q,] = o - (A-G)*+ 7| = (h- 1 +WADV - g (O
- + fﬁ hoGli- dn— min. (A1)
_ a1 = r, )
Vh——ylm for V-q;=<wy,

(34 Constraint(2) and boundary conditiof8) can be written as
follows:

2 - -
V(h+x,)=— yzm for V.gq;=w

f=—ho—(hj_;+WAt)+AtV.q;<0,
The above equations together with equations of material bal- (A2)
ance provide a closed description of the pile evolution.

Equation(34) shows thafy,# 0 for y,;# y,. Sincey, is a

Lagrangian multipliery,V - 5(52—0 and the second com-
ponent does into sediment during sedimentation of the firs
component of the granular mixture. Therefore, the combina®
tion of the assumption of Coulomb friction and the small
velocity of the slide yield the model which predicts the com-
plete separation of components of granular material during

avalanches. Such a separation can occur when intermitterjt [A (V. q<n>)2_,_7pk q&m (Ne_1+WADV - q (n)
avalanches are obtained when rotating a horizontal dru

filled with a mixture of two granular materials slowly and

continuously. Indeed, particle size segregation in a rotating Fr(FM— M2 XM (£ A(M)1gQ)

drum was observed experimentally[ib7].

qn|F1:0

lliquatlons(Al) and (A2) together with Eq.(8) provide a

Closed description of the system. This problem can be solved
by duality method[19]. The simplest one leads to the fol-
lowing sequence of minimization problems:

+ 4; hoal™ - dn—min,
r, g
VI. CONCLUSIONS
A variational form of the basic thermodynamics prin- AW =sug [N Y+ g;rf q(n 1,01, 0<e,<2,
ciples was applied to describe dynamics of sandpiles. A sys-
tem of governing the equations and boundary conditions was 0. . 0.
derived. It is shown that the variational principle can bep “)—(p(“ Dy q (n- 1)) /S F{ (p(” D+ q(“_l’”,
readily implemented in a numerical algorithm. Equations de-
scribing the flow of granular material down a rigid edge were
demonstrated to be a particular case of the derived general 0<6,<2,
system of equations for the avalanches dynamics in sand-
piles. The derived system of equations of sandpile dynamics g“(“)—sup{ e )\2(n>> ,0}’
r

predicts the complete separation of a mixture of two granular
materials during avalanchgs8].

whereﬁ and\ are Lagrangian multipliers; is a slack vari-
able, andr is a penalty parameter.
This problem of quadratic programming can be solved by
relaxation methods or by reduction to linear equations of an
The variational method not only provides an analyticalelliptic type. The above algorithm converges for an arbitrary
description of the problem, it can also be used for constructvalue of a penalty parameter{19].

APPENDIX: NUMERICAL ALGORITHM
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